Detecting Potential Biosignatures in super-Earth Atmospheres with JWST

Caprice Phillips Pronouns: She/her/hers The Ohio State University

Collaborators: Ji Wang (OSU), Sarah Kendrew (STSci)

super-Earths Are Not Found In The Solar System

What is a **Biosignature**?

• An atmospheric biosignature is a gas whose presence in a planetary atmosphere indicates that the planet likely harbors life

Criteria

- Generated by life
- Build up in planetary atmosphere to be detectable
- Present/active in wavelength range being observed

ExoplanetMissions

Future Exoplanet Missions

WFIRST

Webb

TESS

Ground-based Observatories

Caprice Phillips (NSBP 2020)

Spitzer

Hubble

Kepler

JWST Will Probe super-Earth Atmospheres

SECONDARY

ECLIPSE/THERMAL

EMISSION

JWST Will Provide Unprecedented Area Collection and Wavelength Coverage

Selection Criteria for Targets

10µm Ammonia Feature Is Difficult to Detect with MIRI LRS

Ammonia has many features in the NIR

Cloud Decks Weaken Spectral Features

Signal-To-Noise Scales with $\frac{1}{\mu}$

Lower MMW (90% H₂)

Higher MMW (25% H₂)

Rank List of Targets

Takeaways

- super-Earths are more massive/common than Earth and are promising sites to look for signs of life
- Ammonia is a biosignature unique to a hydrogen dominated atmosphere
- The $10\mu m$ Ammonia feature is difficult to detect with the MIRI LRS instrument
- A lower mean molecular weight atmosphere produces stronger features with transmission spectroscopy
- NIRSpec may be a better tool than MIRI LRS to detect Ammonia in the atmosphere of super-Earths